Monday, December 7, 2009

Children's Ages

Two neighbours have the following conversation:

I don't know the ages of any of your three children.
- The product of their ages is 36.

I still don't know their ages.
- The sum of their ages is your street address.

I still don't know their ages.
- The oldest has red hair.

How old are the children?

Solution in ASCII-HEX. (here's a converter)

46 72 6F 6D 20 61 2A 62 2A 63 3D 33 36 20 77 65 20 68 61 76 65 3A 1F 1F 31 20 2A 20 31 20 2A 20 33 36 1F 31 20 2A 20 32 20 2A 20 31 38 1F 31 20 2A 20 33 20 2A 20 31 32 1F 31 20 2A 20 34 20 2A 20 20 39 1F 31 20 2A 20 36 20 2A 20 20 36 1F 32 20 2A 20 31 20 2A 20 31 38 1F 32 20 2A 20 32 20 2A 20 20 39 1F 32 20 2A 20 33 20 2A 20 20 36 1F 33 20 2A 20 31 20 2A 20 31 32 1F 33 20 2A 20 32 20 2A 20 20 36 1F 33 20 2A 20 33 20 2A 20 20 34 1F 34 20 2A 20 31 20 2A 20 20 39 1F 34 20 2A 20 33 20 2A 20 20 33 1F 36 20 2A 20 31 20 2A 20 20 36 1F 36 20 2A 20 32 20 2A 20 20 33 1F 1F 41 66 74 65 72 20 72 65 6D 6F 76 69 6E 67 20 64 75 70 6C 69 63 61 74 65 73 20 77 65 20 68 61 76 65 3A 1F 1F 31 20 2A 20 31 20 2A 20 33 36 1F 31 20 2A 20 32 20 2A 20 31 38 1F 31 20 2A 20 33 20 2A 20 31 32 1F 31 20 2A 20 34 20 2A 20 20 39 1F 31 20 2A 20 36 20 2A 20 20 36 1F 32 20 2A 20 32 20 2A 20 20 39 1F 32 20 2A 20 33 20 2A 20 20 36 1F 33 20 2A 20 33 20 2A 20 20 34 1F 1F 4C 6F 6F 6B 69 6E 67 20 61 74 20 74 68 65 20 73 75 6D 73 20 77 65 20 68 61 76 65 3A 1F 1F 31 20 2B 20 31 20 2B 20 33 36 20 3D 20 33 38 1F 31 20 2B 20 32 20 2B 20 31 38 20 3D 20 32 31 1F 31 20 2B 20 33 20 2B 20 31 32 20 3D 20 31 36 1F 31 20 2B 20 34 20 2B 20 20 39 20 3D 20 31 34 1F 31 20 2B 20 36 20 2B 20 20 36 20 3D 20 31 33 1F 32 20 2B 20 32 20 2B 20 20 39 20 3D 20 31 33 1F 32 20 2B 20 33 20 2B 20 20 36 20 3D 20 31 31 1F 33 20 2B 20 33 20 2B 20 20 34 20 3D 20 31 30 1F 1F 53 69 6E 63 65 20 74 68 65 20 6C 69 73 74 65 6E 65 72 20 6B 6E 6F 77 73 20 68 65 72 20 6F 77 6E 20 73 74 72 65 65 74 20 61 64 64 72 65 73 73 20 62 75 74 20 64 6F 65 73 6E 27 74 20 79 65 74 20 6B 6E 6F 77 20 74 68 65 20 61 67 65 73 20 6F 66 20 74 68 65 20 63 68 69 6C 64 72 65 6E 2C 20 68 65 72 20 73 74 72 65 65 74 20 61 64 64 72 65 73 73 20 6D 75 73 74 20 62 65 20 31 33 2C 20 62 65 63 61 75 73 65 20 69 74 20 69 73 20 74 68 65 20 6F 6E 6C 79 20 64 75 70 6C 69 63 61 74 65 2C 20 6F 74 68 65 72 77 69 73 65 20 73 68 65 20 77 6F 75 6C 64 20 6B 6E 6F 77 20 74 68 65 20 74 68 72 65 65 20 61 67 65 73 2E 20 53 6F 20 69 74 20 6D 75 73 74 20 62 65 20 6F 6E 65 20 6F 66 3A 1F 1F 31 20 2B 20 36 20 2B 20 36 20 3D 20 31 33 1F 32 20 2B 20 32 20 2B 20 39 20 3D 20 31 33 1F 1F 41 6E 64 20 73 69 6E 63 65 20 74 68 65 72 65 20 69 73 20 22 61 6E 20 6F 6C 64 65 73 74 22 2C 20 69 74 20 6D 75 73 74 20 62 65 20 74 68 61 74 20 74 68 65 20 6F 6C 64 65 72 20 61 67 65 20 69 73 6E 27 74 20 74 77 69 6E 73 2E 1F 1F 54 68 65 72 65 66 6F 72 65 2C 20 74 68 65 20 63 68 69 6C 64 72 65 6E 27 73 20 61 67 65 73 20 61 72 65 3A 20 32 2C 20 32 2C 20 39 2E
{ "loggedin": false, "owner": false, "avatar": "", "render": "nothing", "trackingID": "UA-36983794-1", "description": "A deductive puzzle: find the ages of children given seemingly unrelated information.", "page": { "blogIds": [ 24 ] }, "domain": "holtstrom.com", "base": "\/michael", "url": "https:\/\/holtstrom.com\/michael\/", "frameworkFiles": "https:\/\/holtstrom.com\/michael\/_framework\/_files.4\/", "commonFiles": "https:\/\/holtstrom.com\/michael\/_common\/_files.3\/", "mediaFiles": "https:\/\/holtstrom.com\/michael\/media\/_files.3\/", "tmdbUrl": "http:\/\/www.themoviedb.org\/", "tmdbPoster": "http:\/\/image.tmdb.org\/t\/p\/w342" }