
Implementation of Discrete-Event Control Solutions

Michael Wood and Karen Rudie

Abstract— Despite intensive research on and expansion of
the theoretical aspects of Discrete-Event Systems (DES) control
theory, a limited amount of research has been reported on its
implementation and integration into existing systems. Similarly,
a means of identifying which types of systems are good or
poor candidates for application of DES control theory and
respective methodologies for its implementation require more
investigation. We have examined a class of low-level systems for
application of DES control theory and proposed a methodology
for their implementation. Furthermore, we have developed a
software suite with an emphasis on human-computer inter-
action to facilitate the application of DES control theory in
general.

I. I NTRODUCTION

DES Control Theory was proposed by Ramadge and Won-
ham in [1]. A system is modeled as an automatonG called
the plant and is defined as a five tuple(Q,Σ, δ, q0, Qm) in
the usual way. This means that a human must decide upon
a finite set of symbols to compose the alphabetΣ. This
decision can be complex and error prone, and it may affect
the ease and effectiveness with which the theory can later be
applied. Having determinedΣ it remains to constructG such
thatL(G ) describes all behaviour which is possible. Finally,
one must define a language based uponΣ that describes
behaviour which is not illegal. This can be achieved by
defining an automatonL that generates such a language.

With these constructs, DES control theory can generate an
implicit supervisorS , also defined as a five tuple automaton.
It is guaranteed thatL(S /G ) is a sub-language ofL(G ) ∩
L(L ), which is to say that illegal behaviour is guaranteed
to not occur. The termS /G indicates the standard closed-
loop form. Each element ofΣ that is generated byG is
communicated toS as it is generated, andS disables or
enables each element ofΣ before the next event is generated
by G .

Discrete-event control theory is based on several primary
assumptions, namely, events are generated by the plant,
events occur spontaneously, asynchronously and instanta-
neously and control is imposed by disablement. Many real
systems do not easily conform to these assumptions. The
problem of real-time arises in the implementation of the
closed-loop formS /G . Certainly the communication of an
event fromG to S may be extremely rapid, but can the
enablement or disablement of every element ofΣ actually

This work was supported by NSERC and Queen’s University
M. Wood was with Queen’s University and now works at Entrust.

michael@aggressivesoftware.com
K. Rudie is with the Department of Electrical and Computer

Engineering, Queen’s University, Kingston, Ontario, Canada.
karen.rudie@queensu.ca

occur before the next event is generated byG ? The im-
plementation of the enablement/disablement mechanism can
have a devastating impact on the theory.

In a real instance of the classic cat and mouse maze of
[2], the events would certainly not occur instantaneously.
In other systems, it is inconvenient to model control by
disablement alone. Similarly, in systems that are tightly
coupled to control objectives, it is difficult to ignore causality,
thereby conflicting with the assumption of spontaneity. If one
were to first design a pop machine to randomly dispense
pop and and then later impose control, the solution would
be obviously non-intuitive and inefficient. This exemplifies
an inappropriate instance of spontaneity and disablement.In
some real systems, with a poorly chosen event set, the theory
simply cannot be effectively applied.

It is a fundamental assumption of the framework that
the plant exists independent of supervision and control
objectives. This is appropriate for systems such as the cat
and mouse maze which are composed of various intelligent
entities. It is less appropriate for systems such as a vending
machine. Once a vending machine is manufactured, there no
longer exists a need for control. The question is: “how should
it be designed such that it functions in a desirable manner”;
consequently, the theory must be applied before the system
exists.

The cat and mouse maze is a “good” problem (in the
sense of being well suited to DES control theory) because it
requires high-level control. It is characterized by an existing
system containing entities that can function independent of
each other’s existence and independent of control objectives.

The vending machine is a “bad” problem because it
requires low-level control. It is characterized by entities (such
as sensors and actuators) that have no purpose and do not
function without control objectives. This coupling requires
integration of plant and supervisor in order to produce a
reasonable control solution.

II. TANGIBLE SYSTEMS

A. Real Systems

The majority of current research in DES control theory
has focused on extending the capabilities of the theoretical
framework. Certainly this is necessary in the face of state-
space explosion and intractable problems. Unfortunately little
effort has been focused on how to best use the theory on
real problems. Most arguments begin with “Given a plant
G ...”, while very little guidance has been provided on how
to best go about definingG given a real system and a real set
of goals. One of the great promises of DES control theory
is “correctness by construction”, but this requires that the



plant G and set of legal requirementsL map accurately
to the real system and the real goals. Investigation of the
interface between DES control theory and the real world will
provide guidance as to which types of systems DES control
theory can be advantageously applied, and which systems
raise complications and/or render the theory unusable.

Another property of real systems is that they tend to
occasionally behave in unplanned ways. What is the impact
on the overall behaviour of a system under supervisory
control that generates a string not inL(G )? Assuming the
string contains only elements ofΣ, would the event even
be communicated to the supervisor? If this behaviour is im-
plementation dependent, what guidelines should one follow
when implementing supervisory control? These questions
suppose inconsistences in the model, but even with a correct
model, the theory can fail.

Consider the cat and mouse maze; not as an analogy for
some other system, but a physical maze with a real cat and
a real mouse. Can the proposed theoretical solution actually
solve this real problem? Consider a general maze; not the
one proposed in the classical problem. Presume that the
supervisor allows the cat and the mouse to enter non-adjacent
rooms R1 and R2 that both have access to a connecting
room R3. Let the cat and the mouse simultaneously creep
toward their respective entrances to R3. The supervisor
cannot handle this situation because it violates the founding
assumptions of asynchronous and instantaneous events. A
complicated physical realization of semaphores cannot solve
this problem because it may violate non-blocking. If R3 is
the mouse’s only path back to its home room, and if the cat
(from R1) can prevent the mouse from entering R3 (via a
locking system) then blocking has occurred.

B. Obedient Components

It should be clear that DES control theory was designed
and is best suited for high-level decision making control.
The cat and mouse maze is an analogy for two intelligent
and obedient entities, such as software processes. Both of
these properties are important. In a functioning example,
the cat cannot simply move from one room to another. It
must ask the supervisor if it may perform an action and the
supervisor then grants or denies its request. By assuming
obedience, we can guarantee asynchronous and instantaneous
events. This is exactly the approach taken by the Discrete-
event Systems Controller (DESCO) [4] and conflicts with
the standard closed-loop model. Instead of having events
spontaneously generated byG and then modifyingG to
prevent the future generation of a subset ofΣ, we have events
spontaneously initiated byG and their occurrence is allowed
or disallowed byS . The obedience of the entities makes the
implementation possible via a query/response system instead
of the standard closed-loop system. The intelligence of the
entities makes the modeling possible, as it accounts for the
spontaneous generation of events. Clearly, in a real system,
events occur for a reason. The reasons are encapsulated in
the intelligence of the components, allowing the DES control
theory to view them as spontaneous.

This work was motivated by an interest in the application
of DES control theory to small low-level systems with
implementations in assembly language programming. Such
systems are not characterized by intelligent components.
Without intelligence, there is no behaviour and hence no
obedience. Since DES constructs are modeled as finite-state
machines, and since a pop vending machine is a classical
example of a finite-state machine, it seems to be a primary
candidate for DES control theory. Unfortunately, its applica-
tion is not straightforward.

III. I NITIATED -EVENT METHODOLOGY

A. Overview

Consider a plant with a language over three events labeled
0, 1, 2, and a supervisor with two states0 and 1. Assume
that the legal constraints on the plant are such that when in
state0, events0 and1 should be disabled, and when in state
1, only event2 should be disabled. This can be represented
in software as a pointerp and an array 001110, assuming
that 1 implies enablement, and the first three digits indicate
whether events 0, 1 and 2 should be enabled/disabled at state
0 and the second three digits indicate whether the events
should be enabled/disabled at state 1. This software system
can embody both the supervisor and the plant. As the plant,
it determines that event1 should be initiated. Next, it jumps
to the supervisor subroutine, tests the value ofp (which
represents the state of the supervisor) and indexes the array
at p×sizeof(Σ)+1, assuming indexing starts at zero. With
p = 1, it would index001110 and determine that1 should
be allowed to occur. Before carrying out the occurrence
of 1, it would also have to updatep appropriately via a
similar data structure. The schema here described illustrates
an integration of the plant and supervisor in programmable
systems and is a component of what we call theinitiated-
event methodologywhich is introduced in [3]. Also in [3],
concrete examples with a PIC16F84 microcontroller demon-
strate beginning–to–end application of the theory including
suggestions for automatic machine code generation.

Fundamental to the initiated-event methodology is a par-
ticular style of event space definition (namely, abstracting
uncontrollable inputs and controllable outputs into a single
controllable event that is uncontrollably initiated) and the
goal of automatic code generation (for the programmable
component of the plant). The initiated-event methodology
does not provide a completely automated solution. For each
event definition it is required that the conditions for initiation
and the work necessary for fulfillment both be provided (in
code) by the human designer.

From the point of view of a control solution (such as a
microcontroller), the inputs caused by the human users are
uncontrollable (values read from input pins) and the outputs
generated by the machine are controllable (values written to
output pins). This point of view, however, results in a rather
unwieldy application of DES control theory. This is why
the view must be abstracted. Inputs must be associated with
outputs. As the complexity of this association and abstraction
increases, the amount of work automated by DES control



theory decreases and the amount of work left to the human
and ad hoc methods increases. For this reason it is desirable
to model systems with the simplest possible associations
between inputs and outputs.

B. A Concrete Example

Consider a fairly high-level view of a very simple vending
machine. This vending machine can accept one type of token
and dispense one type of pop. The pop costs two tokens.
The human users may insert tokens (which may be rejected).
The users may also request pop (using a button that may be
ignored). The machine contains a maximum of three pop and
may be refilled by a human technician.

According to the initiated-event methodology, events
should be uncontrollably initiated and be associated with a
controllable action.Pop could represent the uncontrollable
request for a pop paired with the controllable dispensing
of a pop. If the supervisor denies the request, the event
is considered to not have occurred even though work has
occurred within the system. Similarly,token could represent
the uncontrollable insertion of a token into the machine
associated with the controllable rejection of the token. Again,
if the token is rejected (which requires work) the event
is considered to not have occurred. Finally,refill could
represent the uncontrollable refilling of the machine. This
would be modeled as an uncontrollable event because it is
not associated with any output.

0 1 2
token token

refill refill refill

pop

Fig. 1. Rule: pop costs two tokens.

3 2 1 0
pop pop

token, refill token token

refill

pop

refill

refill

Fig. 2. Rule: the machine should not steal tokens.

The plant could then be represented by the single state
automaton with all events in self-loop, and legal behaviour
could be captured by two rules: pop costs two tokens (Figure
1), and the machine shouldn’t accept tokens when it has no
pop to deliver (Figure 2). These rules can be translated into
two legal modules (finite-state machines) and the supervisor
could be computed. An implementation could represent the
plant and supervisor separately in machine code, as in the
previous example with events0, 1, 2.

But the initiated-event methodology can (in some cases)
dissolve the separation between plant and supervisor and
generate a more intuitive solution. This can be achieved if the
lowest level rules have certain properties common to systems
such as this. First, it may be the case that there exists a
correlation between events fromΣ and integer variables that
describe the system. In this case we havetokens with an
initial value of zero that represents the number of tokens
received into the machine’s bank since the last pop was
dispensed. And we havepops with an initial value of three
that represents the number of pops currently in the vending
machine. Note the pluralization of these labels to distinguish
them from the corresponding events. The relationships be-
tween events and system variables is given in Table I.

Symbol Impact on tokens Impact on pops

“token” tokens = tokens + 1 no change
“pop” tokens = tokens - 2 pops = pops -1
“refill” no change pops = 3

TABLE I

EVENTS IMPACT ON SYSTEM VARIABLES.

It may also be the case that each rule or module of the
legal specification has a structure corresponding to exactly
one of the system variables. For our system, this is, in fact,
the case, and the values oftokens and pops are given as
the state labels of Figures 1 and 2, respectively. If a system
has these two properties—(1) mapping between events and
system variables, (2) mapping between legal specification
state structure and system variables—then the separation
between plant and supervisor can be dissolved. Specifically,
instead of having each event routine ask the supervisor for
permission to execute, each routine could test the system
variables against the rules. For this example, the result
is more efficient both in runtime complexity and in data
complexity than solutions that realize the separate structure
of plant and supervisor in assembly language code.

In [3], algorithms are proposed for the automatic genera-
tion of assembly language code given only the information
contained in Table I and Figures 1 and 2 as input. The
output is a complete source code solution lacking only
the implementation of the initiating circumstances for each
event, and the specific tasks for the enabled and disabled
branches of each event. That is, it lacks only the specific
realizations of the abstract event definitions.



IV. SOFTWARE

A. Overview

The majority of DES software, like DES research, is
focused on the theoretical and the abstract, such as improved
implementations of manipulation algorithms. Little effort has
been invested in the development of an intuitive software
suite for the purpose of beginning-to-end application of DES
control theory. Such a tool would be focused on how best a
human might solve a problem using DES control theory with
the most automated and least error-prone means possible.

Our Integrated Discrete-Event Systems (IDES) Software
was developed to be a robust and usable modeling and
pedagogical tool able to output graphs for use in research
documents and interface with real systems for demonstration
of DES control theory principles. It could serve as a starting
point for a standardized and usable conglomerate design
tool for many facets of DES control theory. The IDES
software accomplishes two goals. First it functions as an
interface for specifying DES components in a manner as
analogous as possible to pen and paper drawing. Second it
demonstrates the integrated use of DES control theory with
custom compliant hardware components. It can interface with
such hardware via the RS232 protocol.

The IDES software acknowledges the fact that at some
point, a human will have to define each of the modules of
the plant and legal specification. Should these modules not
be defined in software? This implies a need for the manual
(but assisted) layout of graphs. Most graph drawing packages
focus on the unassisted layout of very large graphs. These
algorithms are necessary for DES components generated by
DES control theory (such as a supervisor) but not for the
initial components themselves. The IDES tool organizes the
interaction between computer automation and the human user
in a more collaborative manner. This ideology is similar to
the approach of the Graph Layout Interactive Diagram Editor
(GLIDE) [5], which improves on general constraint-based
approaches to graph drawing and layout.

B. Development Process

The development cycle of the IDES interface iterated on
experimentation with human users. Subjects ranged from
naive (no knowledge of DES, no formal knowledge of
graphs, marginal experience with computers) through in-
termediate (no knowledge of DES, moderate knowledge of
graphs, moderate experience with computers) to advanced
(considerable experience with DES, formal knowledge of
graphs, considerable experience with computers). Users were
given a simple graph drawn with pen and paper and a work-
station with the IDES software in its initial state and were
asked to recreate the graph using the IDES software. This
provided unbiased analysis of the usability and effectiveness
of the interface. Users were also asked to draw arbitrary
graphs with the IDES software as a means of gauging their
expectations of its functionality. These experiments leadto
the following discoveries.

1) No Logical Relationship Between Graph Components:
Naive users consistently persisted in ignoring the relation-
ships between nodes and edges, considering them no more
related than lines of ink on paper. This resulted in attempts
to create edges before creating nodes.

2) Clicking Paradigms: It was found that regardless of
user type, different users unpredictably and approximately
equally fell into one of two clicking paradigms. Users would
attempt to specify an edge either by mousing down, dragging
and releasing or by clicking, moving the mouse and clicking
again.

3) Visual Model Stronger Than Mental Model:Many
users (including advanced users) failed to choose the internal
area of a node as a clicking target for edge termination.
Because the arrowhead of an initiated edge tracks the mouse
pointer and because completed edges themselves paint from
a point on the circumference of a node to a point on the
circumference of another node, users would click outside of
(but near) a target destination node, instead of inside it.

C. Features

The software provides a standard file system interface,
all with intuitive dialogues and safe warning prompts. It
also supports export of a selectable “Print Area” to vari-
ous formats including: “LATEX”, “EPS”, “GIF” and “PNG”.
Furthermore, it fully supports standard editing actions such
as “Undo”, “Redo”, “Copy”, “Paste”, “Delete” and “Group
Selection”. An intuitive “Zoom” feature is also supported,
and all user actions are supported at all zoom levels. For
maximum ease of manipulation, the graph canvas can be
adjusted both by scrollbars and by a custom “Move” tool.

Fig. 3. Edge Manipulation Options.

Three extra items were added to increase the ease of use
of the graph drawing functionality. First, a “Grid Options”
toolbar item controls the snap-to-grid feature. This applies to
the placement of nodes and assists the user in creating nicely
aligned graphs. The grid’s visibility can be toggled, and its
scale can be modified. Second, a “Show All Edges” toolbar
toggles the visibility of the manipulation handles of all edges.
This provides a venue for quick custom adjustments to the



layout of the graph. Similarly, a “Show All Labels” toolbar
item toggles the visibility of all edge label tethers, resolving
any ambiguity between edge label ownership, and providing
easy repositioning. Figure 3 shows a customized graph with
the edge handles visible.

D. Drawing a Graph

To begin drawing a graph, one must simply click on blank
space and a node appears. One may then click on the node to
initiate an edge. Next one may either click on another node to
terminate the edge, or click on blank space to simultaneously
create a new node and terminate the edge. Both paradigms
of click—move—click and mouse-down—move—mouse-up
are supported. Self-loops can also be created in this way.
One can also disconnect an edge from a node and reconnect
it elsewhere by clicking on the arrowhead of the edge. Figure
4 demonstrates the addition of a new edge.

Fig. 4. Drawing Graphs.

Edges will attempt to automatically position themselves in
a desirable manner. When the default behaviour would cause
overlap or collision, the edges attempt to reposition them-
selves accordingly, and always attempt to display themselves
in a symmetrical and reasonable manner. These automatic
positioning algorithms are based on a set of common config-
urations. Since the default layout algorithms are not perfect,
the user will need to customize the position of elements in the
graph. The “Modify Nodes, Edges or Labels” tool facilitates
this. The user can mouse-down on a node, drag it around,
and mouse-up to reposition it. All the edges connected to the
node will adjust with the user’s movement. To adjust edges
the user must first click on their arrowheads. This selects the
edge and causes it to draw its anchors (four green circles).
The user may click on and drag the anchors to reposition
them. The edge will update accordingly.

The modify tool can also be used to group objects. This
is done in the standard way supporting both CTRL-click and
mouse-down—move—mouse-up to specify a bounding box.

The user can then mouse-down, drag and release to move all
the objects in the selected group. External edges connected
to the group will update in the usual way, attempting to
maintain their specified configurations. Several right-click
popup menus are also provided. These support standard
actions based on the context of the right-click. Such actions
include “Snap To Grid”, “Reset Configuration”, “Copy”,
“Paste”, “Delete”, “Undo”, “Redo”, “Label”, “Initial State”
and “Marked State”.

To add or edit the label for a node, the user may simply
double-click the node when the “modify tool” is selected.
This opens a popup window where the user may type the
text for the node. When the user is done, they may simply
click back anywhere on the main window, or hit ENTER
(CTRL + ENTER achieves a new line). Optionally, labels
can either be standard text or LATEX code. When working
with LATEX, the source is shown in the input box and the
rendered result is shown on the graph.

The alphabetΣ for edge labels is specified in a separate
window, and each event can be associated with a variety of
meta-data. To add a label to an edge, the user must simply
double-click on the edge’s arrowhead or existing label. This
raises a transition chooser popup which is simply an array
of toggle buttons; as the user switches them on and off, the
respective values appear or disappear near the edge. Events
appear as a comma-delimited list in the order in which they
are added to the edge. Any edge that is associated with
at least one uncontrollable transition is drawn as a dashed,
rather than a solid, line.

E. Animated Trace

This feature was developed for use with custom external
hardware representing a real plant. The external hardware
was designed to transmit single bytes representing events
as they occurred in the plant. In the “Graph Specifications”
tab, each event may be assigned a value in the “machine
code” field. The “machine code” field specifies which bytes
map to which events in the graph model. The “Start Trace”
toolbar item allows the user to initiate an animated trace of
transitions in the graph. The system attempts to establish
communication over the COM1 port of the user’s computer
(9600 baud, 8 data bits, no parity, 1 stop bit, no flow control).
When a trace is started, the initial state of the graph becomes
highlighted in blue. The system then listens for transitions.
When they occur, the blue highlight animates across that
transition to the appropriate state, as shown in Figure 5.

The software and machine communication is based on
single byte packets which are interpreted as integer values
between 0 and 255. This limits the effective event space to
256 elements, but was deemed sufficient for simple modeling
purposes. As an added feature, the system can also be used as
a means of control. When a byte is received from COM1 and
an associated outgoing transition is found, the software sends
the same byte back out COM1, but if no matching transition
is found, it does not echo the byte. Custom hardware can
interpret this as control. If the custom hardware consistently
sends controllable event codes before the events occur, it



can interpret the lack of an echo as indication that the event
should be disabled.

Fig. 5. Trace of a Real System.

Figure 6 is a photograph of a real model that functioned
under DES control imposed by the IDES software. It contains
two microcontrollers, a small LCD and several push buttons
and LEDs. These components represent the behaviour of a
simple vending machine. The code on the microcontroller
notifies the IDES software of various events and listens for
an echo of its notification. Without this echo, it assumes
disablement. By running an appropriate supervisor in the
IDES software connected to the hardware component, the
occurrence of certain events (initiated by a human pressing
a button) are prevented.

Fig. 6. A Real System Used In Experimentation.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

While advances continue to be made in the theoretical
framework of DES control, insufficient energy has been fo-
cused on investigating its implementation and integrationinto
new and existing systems. We lack a means of identifying
which types of systems are good or poor candidates for ap-
plication of DES control theory, and corresponding method-
ologies for its implementation require more investigation. We
have examined a class of low-level systems for application of
DES control theory and proposed a methodology for system
implementation. The initiated-event methodology is both an
ideology for the application of the modeling theory and a
framework for increased automation in the generation of a
final control solution. We have also developed a software
suite with an emphasis on human-computer interaction to
facilitate the application of DES control theory in general.
The IDES software minimizes human labour in the design
of DES components, and interfaces with custom hardware to
demonstrate DES control.

B. Future Work

The IDES Software is incomplete. To be truly useful as a
design tool, it must interface with DES algorithm toolkits to
allow operations to be performed on the input models. Work
along these lines is currently being carried out in the DES
Lab at Queen’s University. Furthermore, for a real beginning-
to-end solution for application of DES control theory to
low-level microcontroller systems, it would beneficial to
implement the automatic code generation for the initiated-
event methodology suggested in [3].

VI. ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC). We thank
Lenko Grigorov for his suggestions, which improved our
software

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete-event processes”,SIAM Journal of Control and Optimization,
vol. 25, num. 1, 1987, pp 206-230.

[2] W. M. Wonham and P. J. Ramadge, “On the Supremal Controllable
Sublanguage of a Given Language”,SIAM Journal of Control and
Optimization, vol. 25, num. 3, 1987, pp 637-659.

[3] M. M. Wood, “Application, Implementation and Integrationof
Discrete-Event Systems Control Theory”, Master’s Thesis, Department
of Electrical and Computer Engineering, Queen’s University, Kingston,
Ontario, 2005.

[4] M. Fabian and A. Hellgren, “DESCO—a tool for education and control
of discrete event systems”, Discrete Event Systems, Analysisand
Control, 2000, pp 471472.

[5] K. Ryall, J. Marks and S. Shieber, “An interactive constraint-based
system for graph drawings”, In the Proceedings of the 10th Annual
Symposium on User Interface Software and Technology, Banff,Al-
berta, 1997, pp 97-104.


