Implementation of Discrete-Event Control Solutions

Michael Wood and Karen Rudie

Abstract— Despite intensive research on and expansion of occur before the next event is generated 9 The im-
the theoretical aspects of Discrete-Event Systems (DES) cooit plementation of the enablement/disablement mechanism can
theory, a limited amount of research has been reported on its have a devastating impact on the theory.

implementation and integration into existing systems. Similarly, In a real instan f the classi t and m maze of
a means of identifying which types of systems are good or a real instance or the classic cat a ouse maze o

poor candidates for application of DES control theory and [2], the events would certainly not occur instantaneously.
respective methodologies for its implementation require more In other systems, it is inconvenient to model control by

investigation. We have examined a class of low-level systems for disablement alone. Similarly, in systems that are tightly
application of DES control theory and proposed a methodology o pjed to control objectives, it is difficult to ignore cality,

for their implementation. Furthermore, we have developed a th b flicti ith th fi f t itv.He
software suite with an emphasis on human-computer inter- ereby contlicting wi € assumption of spontaneity.neo

action to facilitate the application of DES control theory in ~ Were to first design a pop machine to randomly dispense
general. pop and and then later impose control, the solution would

be obviously non-intuitive and inefficient. This exempkfie
I. INTRODUCTION an inappropriate instance of spontaneity and disablenirent.
gome real systems, with a poorly chosen event set, the theory
simply cannot be effectively applied.
It is a fundamental assumption of the framework that
plant exists independent of supervision and control

DES Control Theory was proposed by Ramadge and Wo
ham in [1]. A system is modeled as an automatbrcalled
the plant and is defined as a five tugl@, 3, J, ¢o, @) in

the usual way. This means that a human must decide upofr, *' e .
a finite set of symbols to compose the alphabetThis ©° jectives. This is appropriate for systems such as the cat

decision can be complex and error prone, and it may aﬁe@(‘q mouse maze which are composed of various intelliggnt
the ease and effectiveness with which the theory can later S@t't'?s' Itis less appr(_)prlate fo_r sy_stems such as a vgndin
applied. Having determineX it remains to construc¥ such machme._Once a vending machine is manufa_ctured, there no
that L(¥¢) describes all behaviour which is possible. Finally,Ionger exists a need for cgntrol. '_I'he question is: how S“OL",,
one must define a language based upbrhat describes it be designed such that it functions in a desirable manner”;
behaviour which is not illegal. This can be achieved bfo'nsequently, the theory must be applied before the system
defining an automator?” that generates such a language. exlﬁrt]s. ¢ and < 2 “aood” bropl i th
With these constructs, DES control theory can generate an € cfab an mﬁuse_t mdelzeDESa gct)o | thpro eLn (in e.t
implicit supervisor.¥, also defined as a five tuple automaton>C"Ns€ Of being Well suited 1o contro eory) ecause |
It is guaranteed thak(.# /%) is a sub-language of(%) N requires hlgh-_le_vel con_t_rol. Itis characterl_zed_by an &xis
L(.Z), which is to say that illegal behaviour is guarantee&yStem containing entities t_hat can function mdepen_dén_t °
to not occur. The tern¥” /¥ indicates the standard cIosed-eaCh other's existence and independent of control obg:tiv

loop form. Each element of that is generated by is Th'e vending machine IS a bad problem bgcause It
communicated to as it is generated, ang” disables or requires low-level control. It is characterized by enst{such

enables each element Bfbefore the next event is generateoaS Sensors and actuators)_tha_t have ho purpose and _do not
by 4. function without control objectives. This coupling recsr

. . . __integration of plant and supervisor in order to produce a
Discrete-event control theory is based on several primar .
asonable control solution.

assumptions, namely, events are generated by the plant,
events occur spontaneously, asynchronously and instanta- Il. TANGIBLE SYSTEMS
neously and control is imposed by disablement. Many rey Real Systems

systems do not easily conform to these assumptions. The
problem of real-time arises in the implementation of th%
closed-loop form¥ /% . Certainly the communication of an
event from¥ to . may be extremely rapid, but can the
enablement or disablement of every elementofctually

The majority of current research in DES control theory
as focused on extending the capabilities of the theotetica
framework. Certainly this is necessary in the face of state-
space explosion and intractable problems. Unfortunaittliy |
effort has been focused on how to best use the theory on

This work was supported by NSERC and Queen’s University real problems. M_OSt arguments begin with “G_'Ven a plant
‘M. Wood was with Queen's University and now works at Entrust%/...", while very little guidance has been provided on how
m chael @ggr essi vesof tware. com to best go about defining given a real system and a real set

K. Rudie is with the Department of Electrical and Computer .
Engineering, Queen's University, Kingston, Ontario, Qima of goals. One of the great promises of DES control theory

kar en. rudi e@ueensu. ca is “correctness by construction”, but this requires tha th

plant ¢ and set of legal requirement®’ map accurately This work was motivated by an interest in the application
to the real system and the real goals. Investigation of thef DES control theory to small low-level systems with
interface between DES control theory and the real world wilimplementations in assembly language programming. Such
provide guidance as to which types of systems DES contrelystems are not characterized by intelligent components.
theory can be advantageously applied, and which systemdthout intelligence, there is no behaviour and hence no
raise complications and/or render the theory unusable. obedience. Since DES constructs are modeled as finite-state
Another property of real systems is that they tend tonachines, and since a pop vending machine is a classical
occasionally behave in unplanned ways. What is the impaekample of a finite-state machine, it seems to be a primary
on the overall behaviour of a system under supervisoryandidate for DES control theory. Unfortunately, its apgli
control that generates a string not IN¢)? Assuming the tion is not straightforward.
string contains only elements af, would the event even
be communicated to the supervisor? If this behaviour is im-)
plementation dependent, what guidelines should one follofy: Overview
when implementing supervisory control? These questions Consider a plant with a language over three events labeled
suppose inconsistences in the model, but even with a corréktl, 2, and a supervisor with two stat@sand 1. Assume
model, the theory can fail. that the legal constraints on the plant are such that when in
Consider the cat and mouse maze; not as an analogy f&iate0, eventsO and1 should be disabled, and when in state
some other system, but a physical maze with a real cat addonly event2 should be disabled. This can be represented
a real mouse. Can the proposed theoretical solution agtualh software as a pointep and an array 001110, assuming
solve this real problem? Consider a general maze; not tlieat 1 implies enablement, and the first three digits indicat
one proposed in the classical problem. Presume that thdether events 0, 1 and 2 should be enabled/disabled at state
supervisor allows the cat and the mouse to enter non-adjacénand the second three digits indicate whether the events
rooms R1 and R2 that both have access to a connectisgould be enabled/disabled at state 1. This software system
room R3. Let the cat and the mouse simultaneously cregan embody both the supervisor and the plant. As the plant,
toward their respective entrances to R3. The supervisdrdetermines that everit should be initiated. Next, it jumps
cannot handle this situation because it violates the foundi to the supervisor subroutine, tests the valuepofwhich
assumptions of asynchronous and instantaneous eventsrefresents the state of the supervisor) and indexes thg arra
complicated physical realization of semaphores canneesolatp x sizeof (%) + 1, assuming indexing starts at zero. With
this problem because it may violate non-blocking. If R3 i = 1, it would index001110 and determine that should
the mouse’s only path back to its home room, and if the cdite allowed to occur. Before carrying out the occurrence
(from R1) can prevent the mouse from entering R3 (via af 1, it would also have to updatg appropriately via a

Il1. INITIATED-EVENT METHODOLOGY

locking system) then blocking has occurred. similar data structure. The schema here described ilkgstra
) an integration of the plant and supervisor in programmable
B. Obedient Components systems and is a component of what we call ithiéated-

It should be clear that DES control theory was designeegvent methodologwhich is introduced in [3]. Also in [3],
and is best suited for high-level decision making controlconcrete examples with a PIC16F84 microcontroller demon-
The cat and mouse maze is an analogy for two intelligerstrate beginning—to—end application of the theory incigdi
and obedient entities, such as software processes. Bothsnfggestions for automatic machine code generation.
these properties are important. In a functioning example, Fundamental to the initiated-event methodology is a par-
the cat cannot simply move from one room to another. ticular style of event space definition (namely, abstragctin
must ask the supervisor if it may perform an action and thencontrollable inputs and controllable outputs into a Eng
supervisor then grants or denies its request. By assumiogntrollable event that is uncontrollably initiated) arftet
obedience, we can guarantee asynchronous and instansanegnal of automatic code generation (for the programmable
events. This is exactly the approach taken by the Discreteemponent of the plant). The initiated-event methodology
event Systems Controller (DESCO) [4] and conflicts withdoes not provide a completely automated solution. For each
the standard closed-loop model. Instead of having evengsent definition it is required that the conditions for iafton
spontaneously generated 4 and then modifyingZ to and the work necessary for fulfillment both be provided (in
prevent the future generation of a subsetofve have events code) by the human designer.
spontaneously initiated b¥ and their occurrence is allowed From the point of view of a control solution (such as a
or disallowed by.¥. The obedience of the entities makes thamicrocontroller), the inputs caused by the human users are
implementation possible via a query/response systemadsteuncontrollable (values read from input pins) and the owtput
of the standard closed-loop system. The intelligence of ttgenerated by the machine are controllable (values writien t
entities makes the modeling possible, as it accounts for tleaitput pins). This point of view, however, results in a rathe
spontaneous generation of events. Clearly, in a real systeamwieldy application of DES control theory. This is why
events occur for a reason. The reasons are encapsulatedhie view must be abstracted. Inputs must be associated with
the intelligence of the components, allowing the DES cdntrautputs. As the complexity of this association and abstract
theory to view them as spontaneous. increases, the amount of work automated by DES control

theory decreases and the amount of work left to the humanThe plant could then be represented by the single state
and ad hoc methods increases. For this reason it is desirabl#gomaton with all events in self-loop, and legal behaviour
to model systems with the simplest possible associatiom®uld be captured by two rules: pop costs two tokens (Figure
between inputs and outputs. 1), and the machine shouldn’'t accept tokens when it has no
pop to deliver (Figure 2). These rules can be translated into
B. A C9ncrete I;xample . . ~ two legal modules (finite-state machines) and the supearviso
Consider a fairly high-level view of a very simple vendingcould be computed. An implementation could represent the
machine. This vending machine can accept one type of tok@flant and supervisor separately in machine code, as in the
and dispense one type of pop. The pop costs two tOkertﬁevious example with even 1, 2.
The human users may insert tokens (which may be rejected).g i the initiated-event methodology can (in some cases)

The usders:rhmay alsk? request.pOp (usmg a but;o?] that may 8§solve the separation between plant and supervisor and
ignored). The machine contains a maximum of three pop arbcienerate a more intuitive solution. This can be achievefkif t

may be refilled by a human technician. lowest level rules have certain properties common to system

According to the |n|t|gt_e_d-event methodology, eve_ntiuch as this. First, it may be the case that there exists a
should be uncontrollably initiated and be associated with Gorrelation between events fromand integer variables that
controllable actionPop could represent the uncontrollabledescribe the system. In this case we htveens with an
request for a pop paire_d with the controllable diSpenSinﬁ‘litial value of zero that represents the number of tokens
.Of a pop. If the supervisor denies the request, the eveFgceived into the machine’s bank since the last pop was
'S con3|der_ed_ to not have oc_cu_rred even though work h%?spensed. And we hayeops with an initial value of three
occurred within the system. Similarligken could represent that represents the number of pops currently in the vending

the uncontrollable insertion of a token into the maChin?nachine Note the pluralization of these labels to distisigu
associated with the controllable rejection of the tokeraiAg . from the corresponding events. The relationships be-

if the token is rejected (which requires work) the evenf een events and system variables is given in Table I.
is considered to not have occurred. Finaltefill could

represent the uncontrollable refilling of the machine. This
would be modeled as an uncontrollable event because it is

not associated with anv outout [Symbol [Impact on tokens | Impact on pops|
y put. “token” | tokens = tokens + 1| no change
“pop” tokens = tokens - 2| pops = pops -1
“refill” no change pops = 3
TABLE |

EVENTS IMPACT ON SYSTEM VARIABLES

refill refill refill

It may also be the case that each rule or module of the
legal specification has a structure corresponding to exactl
one of the system variables. For our system, this is, in fact,
the case, and the values tfkens and pops are given as
the state labels of Figures 1 and 2, respectively. If a system

pop has these two properties—(1) mapping between events and
system variables, (2) mapping between legal specification
Fig. 1. Rule: pop costs two tokens. state structure and system variables—then the separation

between plant and supervisor can be dissolved. Specifically
instead of having each event routine ask the supervisor for
permission to execute, each routine could test the system
token. refill token token yariables agginst the rules. _For this exa_mple, the result
PN is more efficient both in runtime complexity and in data
complexity than solutions that realize the separate stract
of plant and supervisor in assembly language code.

pop pop pop . .
2 1 0 In [3], algorithms are proposed for the automatic genera-
~ U v tion of assembly language code given only the information

I
\

A CO

\\\\\refill ’,/" ’,/’ contained in Table | and Figures 1 and 2 as input. The
\\ E_r;fﬁl -7 output is a complete source code solution lacking only
S~ -~ - the implementation of the initiating circumstances forteac

refill event, and the specific tasks for the enabled and disabled

branches of each event. That is, it lacks only the specific
Fig. 2. Rule: the machine should not steal tokens. realizations of the abstract event definitions.

IV. SOFTWARE 1) No Logical Relationship Between Graph Components:
Naive users consistently persisted in ignoring the ratatio
ships between nodes and edges, considering them no more

The majority of DES software, like DES research, igelated than lines of ink on paper. This resulted in attempts
focused on the theoretical and the abstract, such as ingro/@ create edges before creating nodes.

implementations of manipulation algorithms. Little effops ~ 2) Clicking Paradigms:It was found that regardless of

been invested in the development of an intuitive softwardser type, different users unpredictably and approximatel

suite for the purpose of beginning-to-end application ofDE equally fell into one of two clicking paradigms. Users would
control theory. Such a tool would be focused on how best @itempt to specify an edge either by mousing down, dragging
human might solve a problem using DES control theory witf@nd releasing or by clicking, moving the mouse and clicking
the most automated and least error-prone means possibleagain.

Our Integrated Discrete-Event Systems (IDES) Software 3) Visual Model Stronger Than Mental ModeMany

was developed to be a robust and usable modeling aHgers (including advanced users) failed to choose thenaiter

pedagogical tool able to output graphs for use in resear@iea of a node as a clicking target for edge termination.

documents and interface with real systems for demonstrati®ecause the arrowhead of an initiated edge tracks the mouse
of DES control theory principles. It could serve as a startinPointer and because completed edges themselves paint from
point for a standardized and usable conglomerate designPoint on the circumference of a node to a point on the
tool for many facets of DES control theory. The IDESCircumference of another node, users would click outside of
software accomplishes two goals. First it functions as atPut near) a target destination node, instead of inside it.
interface for specifying DES components in a manner ?

: i . Features

analogous as possible to pen and paper drawing. Second” it

demonstrates the integrated use of DES control theory with The software provides a standard file system interface,

custom compliant hardware components. It can interfade wigll With intuitive dialogues and safe warning prompts. It

such hardware via the RS232 protocol. also supports export of a selectable “Print Area” to vari-
The IDES software acknowledges the fact that at sonUS formats including: AIEX", “EPS”, “GIF” and “PNG”.

point, a human will have to define each of the modules drurthermore, it fully supports standard editing actionshsu

the plant and legal specification. Should these modules n@d¢ “Undo”, “Redo”, “Copy”, “Paste”, “Delete” and “Group

be defined in software? This implies a need for the manu&election”. An intuitive “Zoom” feature is also supported,

(but assisted) layout of graphs. Most graph drawing packagé”d .aII user actions are supported at all zoom levels. For

focus on the unassisted layout of very large graphs. The§&@ximum ease of manipulation, the graph canvas can be

algorithms are necessary for DES components generated #justed both by scrollbars and by a custom “Move” tool.

DES control theory (such as a supervisor) but not for the

initial components themselves. The IDES tool organizes the

interaction between computer automation and the human usg#) :

in a more collaborative manner. This ideology is similar t

the approach of the Graph Layout Interactive Diagram Editd = Edt Graeh Options Help

(GLIDE) [5], which improves on general constraint-baseq [= & E. a ome | X | @

approaches to graph drawing and layout. 20px v | g | B @y | D04

A. Overview

Un-named Gra

B. Development Process

The development cycle of the IDES interface iterated o
experimentation with human users. Subjects ranged froj
naive (no knowledge of DES, no formal knowledge of
graphs, marginal experience with computers) through i

termediate (no knowledge of DES, moderate knowledge =< Wieelion Cseles mane
graphs, moderate experience with computers) to advanced
(considerable experience with DES, formal knowledge of Fig. 3. Edge Manipulation Options.

graphs, considerable experience with computers). Usais we

given a simple graph drawn with pen and paper and a work- Three extra items were added to increase the ease of use
station with the IDES software in its initial state and wereof the graph drawing functionality. First, a “Grid Options”
asked to recreate the graph using the IDES software. Thisolbar item controls the snap-to-grid feature. This agptd
provided unbiased analysis of the usability and effecédgsn the placement of nodes and assists the user in creating nicel
of the interface. Users were also asked to draw arbitramligned graphs. The grid’s visibility can be toggled, argl it
graphs with the IDES software as a means of gauging thescale can be modified. Second, a “Show All Edges” toolbar
expectations of its functionality. These experiments lead toggles the visibility of the manipulation handles of alged.

the following discoveries. This provides a venue for quick custom adjustments to the

layout of the graph. Similarly, a “Show All Labels” toolbar The user can then mouse-down, drag and release to move all

item toggles the visibility of all edge label tethers, resod

the objects in the selected group. External edges connected

any ambiguity between edge label ownership, and providing the group will update in the usual way, attempting to
easy repositioning. Figure 3 shows a customized graph withaintain their specified configurations. Several righticli

the edge handles visible.

D. Drawing a Graph

popup menus are also provided. These support standard
actions based on the context of the right-click. Such astion
include “Snap To Grid”, “Reset Configuration”, “Copy”,

To begin drawing a graph, one must simply click on blanKPaste”, “Delete”, “Undo”, “Redo”, “Label”, “Initial Sta¢”
space and a node appears. One may then click on the nodeatm “Marked State”.
initiate an edge. Next one may either click on another node to To add or edit the label for a node, the user may simply
terminate the edge, or click on blank space to simultangousiiouble-click the node when the “modify tool” is selected.
create a new node and terminate the edge. Both paradigifisis opens a popup window where the user may type the
of click—move—click and mouse-down—move—mouse-ugext for the node. When the user is done, they may simply
are supported. Self-loops can also be created in this waglick back anywhere on the main window, or hit ENTER
One can also disconnect an edge from a node and reconn@€TRL + ENTER achieves a new line). Optionally, labels
it elsewhere by clicking on the arrowhead of the edge. Figurean either be standard text cfTgX code. When working

4 demonstrates the addition of a new edge.

* Integrated Discrete Event Systems Software E@@

File Edit Graph Options Help
O EE [T | & @
Q@ M 0w

Un-named Graph lGraph Specifications] LaTek Oukpuk]

2px - g8 E

[]

" o

Last Transition Code: none

Fig. 4. Drawing Graphs.

with IATEX, the source is shown in the input box and the
rendered result is shown on the graph.

The alphabet for edge labels is specified in a separate
window, and each event can be associated with a variety of
meta-data. To add a label to an edge, the user must simply
double-click on the edge’s arrowhead or existing labelsThi
raises a transition chooser popup which is simply an array
of toggle buttons; as the user switches them on and off, the
respective values appear or disappear near the edge. Events
appear as a comma-delimited list in the order in which they
are added to the edge. Any edge that is associated with
at least one uncontrollable transition is drawn as a dashed,
rather than a solid, line.

E. Animated Trace

This feature was developed for use with custom external
hardware representing a real plant. The external hardware
was designed to transmit single bytes representing events
as they occurred in the plant. In the “Graph Specifications”
tab, each event may be assigned a value in the “machine
code” field. The “machine code” field specifies which bytes
map to which events in the graph model. The “Start Trace”

Edges will attempt to automatically position themselves itoolbar item allows the user to initiate an animated trace of
a desirable manner. When the default behaviour would causansitions in the graph. The system attempts to establish
overlap or collision, the edges attempt to reposition thencommunication over the COM1 port of the user's computer
selves accordingly, and always attempt to display thermeselv(9600 baud, 8 data bits, no parity, 1 stop bit, no flow control)
in a symmetrical and reasonable manner. These automalithen a trace is started, the initial state of the graph becomes
positioning algorithms are based on a set of common configpighlighted in blue. The system then listens for transgion
urations. Since the default layout algorithms are not perfe When they occur, the blue highlight animates across that
the user will need to customize the position of elementsén thiransition to the appropriate state, as shown in Figure 5.
graph. The “Modify Nodes, Edges or Labels” tool facilitates The software and machine communication is based on
this. The user can mouse-down on a node, drag it aroursingle byte packets which are interpreted as integer values
and mouse-up to reposition it. All the edges connected to theetween 0 and 255. This limits the effective event space to
node will adjust with the user's movement. To adjust edge®56 elements, but was deemed sufficient for simple modeling
the user must first click on their arrowheads. This sele@s ttpurposes. As an added feature, the system can also be used as
edge and causes it to draw its anchors (four green circleg)means of control. When a byte is received from COM1 and
The user may click on and drag the anchors to repositicen associated outgoing transition is found, the softwandse

them. The edge will update accordingly.

the same byte back out COM1, but if no matching transition

The modify tool can also be used to group objects. This found, it does not echo the byte. Custom hardware can
is done in the standard way supporting both CTRL-click anthterpret this as control. If the custom hardware conststen
mouse-down—move—mouse-up to specify a bounding bosends controllable event codes before the events occur, it

can interpret the lack of an echo as indication that the event V. CONCLUSIONS AND FUTURE WORK

While advances continue to be made in the theoretical
framework of DES control, insufficient energy has been fo-

* " trace.gml - Integrated Discrete Event Systems... |-_||g|r‘5__<| cused on investigating its implementation and integraitibm

File Edit Graph Options Hslp new and existing systems. We lack a means of identifying
O L E D@ & which_ types of systems are good or poor candigiates for ap-
2opx + §2 | & @ dw T4 plication of DES control theory, and corresponding method-

ologies for its implementation require more investigatidfe
have examined a class of low-level systems for applicatfon o
DES control theory and proposed a methodology for system
implementation. The initiated-event methodology is bath a
ideology for the application of the modeling theory and a
framework for increased automation in the generation of a
final control solution. We have also developed a software
suite with an emphasis on human-computer interaction to
facilitate the application of DES control theory in general
The IDES software minimizes human labour in the design
of DES components, and interfaces with custom hardware to
Trace Started Last Transition Code: none demonstrate DES control.

B. Future Work

The IDES Software is incomplete. To be truly useful as a
design tool, it must interface with DES algorithm toolkits t
allow operations to be performed on the input models. Work
Figure 6 is a photograph of a real model that functionegiong these lines is currently being carried out in the DES
under DES control imposed by the IDES software. It containgab at Queen’s University. Furthermore, for a real begignin
two microcontrollers, a small LCD and several push buttong-end solution for application of DES control theory to
and LEDs. These components represent the behaviour ofa@v-level microcontroller systems, it would beneficial to

simple vending machine. The code on the microcontrollgiplement the automatic code generation for the initiated-
notifies the IDES software of various events and listens fasvent methodology suggested in [3].

an echo of its notification. Without this echo, it assumes

disablement. By running an appropriate supervisor in the VI. ACKNOWLEDGMENTS

IDES software connected to the hardware component, theThis work was supported in part by the Natural Sciences

occurrence of certain events (initiated by a human pressirsgnd Engineering Research Council (NSERC). We thank

a button) are prevented. Lenko Grigorov for his suggestions, which improved our
software

trace.gml l Graph Specifications] LaTek Oukpuk]

Fig. 5. Trace of a Real System.

REFERENCES

[1] P.J. Ramadge and W. M. Wonham, “Supervisory control of asct#
discrete-event processeSIAM Journal of Control and Optimization
vol. 25, num. 1, 1987, pp 206-230.

[2] W. M. Wonham and P. J. Ramadge, “On the Supremal Contrellabl
Sublanguage of a Given Language&|AM Journal of Control and
Optimization vol. 25, num. 3, 1987, pp 637-659.

[3] M. M. Wood, “Application, Implementation and Integratioonf
Discrete-Event Systems Control Theory”, Master’'s Thesepdtment
of Electrical and Computer Engineering, Queen’s Universitggston,
Ontario, 2005.

[4] M. Fabian and A. Hellgren, “DESCO—a tool for educatiordarontrol
of discrete event systems”, Discrete Event Systems, Analgsi
Control, 2000, pp 471472.

[5] K. Ryall, J. Marks and S. Shieber, “An interactive coastt-based
system for graph drawings”, In the Proceedings of the 10thuah
Symposium on User Interface Software and Technology, Bakiff,
berta, 1997, pp 97-104.

Fig. 6. A Real System Used In Experimentation.

