
Queen’s University ELEC 865: Coding Theory

Lecture of January 21th 2004
Scribe: Michael Wood

1 Error Detection (continued)

Hamming Distance

Recall from lecture 1 that Hamming Distance is defined as: dH(x, y) =∑n
i=1 δ[xi 6= yi]. Also recall that the minimum Hamming distance of a

code is defined as: d = min{dH(ci, cj) : ci ∈ C ∧ cj ∈ C ∧ ci 6= cj}.

Another useful value is Hamming weight wH(·) which is the Ham-
ming distance of a codeword from the zero codeword. Formally:

0 ≤ wH(c) = dH(c, o) ≤ n where c ∈ C is an n-tuple vector and o = {0}n.

The error detecting capability of a code C is expressed in terms
of Hamming weights and distances. In particular, it takes at least d
changes to change one codeword into another, where d is the minimum
Hamming distance of the code thus every error pattern of wH ≤ d− 1
is detectable.

Example:
C = {000, 011, 101, 110} ⇒ d = 2
⇒ any error pattern of wH ≤ 1 is detectable
⇒ any single error is detectable.

Note however that the error detecting capability of a code is a lower
bound, meaning that we are guaranteed to detect errors if the error
pattern has wH ≤ d− 1; however, we may still detect error patterns of
wH > d− 1.

C = {000, 011, 101, 110} ⇒ d = 2 ⇒ single error detection.

000 → ⊕→ 111
↑

111 (error pattern)

(error has occurred and is detectable even
though the number of errors > d− 1)

(Here the result is ‘bitwise’ mod 2 addition of the input and the error pattern.)

Lecture Notes, Winter 2004 1

Queen’s University ELEC 865: Coding Theory

2 Error Correction

Imagine the observation space An of all the possible received vec-
tors. It would be common sense to decode any r ∈ An, but r /∈ C to
the closest codeword to it in C (in terms of Hamming distance) be-
cause that is clearly the most probable codeword to have been sent. As
codewords are separated by at least d locations, any number of errors
less than d

2
must be correctable.

The error correcting capability of code (denoted by t) is expressed
in terms of Hamming weights and distances. Where d is the minimum
Hamming distance of the code, every error pattern of wH ≤

⌊
d−1
2

⌋
is

correctable. Hence t =
⌊

d−1
2

⌋
.

Both error detection and correction capabilities can be visualized
in the following manner. The set of all possible words w ∈ An is rep-
resented by the rounded rectangle in the following figure. Some of the
words are codewords, marked as points ci. Circles are drawn around
the codewords at radius

⌊
d−1
2

⌋
. It should be clear that if less than or

equal to d−1 errors have occurred in transmission of codeword c1 then
it is not possible for the result to be any other ci ∈ C; Furthermore,
if less than or equal to

⌊
d−1
2

⌋
errors have occurred in transmission of

codeword c1 then it must still be within the radius of the circle about
c1 and therefore is closest to c1 than any other ci. Hence by the closest
codeword scheme, we can definitely correct the error. Note that it is
possible for an arbitrarily large number of errors to occur in transmis-
sion, thereby allowing the received value to be any w ∈ An. If this
occurred, then our closest codeword correction scheme would be in er-
ror, but the probability of such an event is usually vanishingly small.

An'

&

$

%

&%
'$

&%
'$

&%
'$r

r r
c1

c2 c3

A
A
AAUA

A
AAK

d

�
���
��t

Lecture Notes, Winter 2004 2

Queen’s University ELEC 865: Coding Theory

Hamming distance is a metric.

A metric is a non-negative symmetric value which enjoys the tri-
angle property.

The triangle property can be thought of as the behavior of “real”
distances. For example, euclidean distance enjoys the triangle property.
It is formally defined below by three requirements.
∀x, y, z ∈ X, d(·) : X ×X → R

1. d(x, y) ≥ 0 (equivalent only when x = y)
2. d(x, y) = d(y, x)
3. d(x, y) + d(x, z) ≥ d(y, z)

d(·) enjoys the triangle property only if 1 and 2 and 3 are true.

Lemma 1 ∀x, y, z ∈ X : δ[x 6= y] + δ[x 6= z] ≥ δ[y 6= z]

Proof: (by contradiction)

Recall: δ[true] = 1, δ[false] = 0

Assume: δ[x 6= y] + δ[x 6= z] < δ[y 6= z]

Case 1: δ[y 6= z] = 1
⇒ δ[x 6= y] + δ[x 6= z] = 0
⇒ (x = y) ∧ (x = z) ⇒ y = z
⇒ δ[y 6= z] = 0 ⇒ contradiction.

Case 2: δ[y 6= z] = 0
⇒ δ[x 6= y] + δ[x 6= z] < 0
⇒ contradiction. (because d(·) is non-negative)

Lecture Notes, Winter 2004 3

Queen’s University ELEC 865: Coding Theory

Theorem: Hamming Distance is a metric.?

Proof:
1. Hamming Distance is non-negative by definition.
2. Hamming Distance is symmetric by definition.
3. Hamming Distance enjoys the triangle property:

d(x, z) + d(x, y) =
∑

i δ[xi 6= zi] +
∑

i δ[xi 6= yi]
=

∑
i (δ[xi 6= zi] + δ[xi 6= yi])

≥
∑

i δ[zi 6= yi](by Lemma1)
≥ d(y, z)

We can now use this result to prove our earlier claims about error
correction.

Theorem: Let C be a code with minimum Hamming distance d using?
the “closest codeword” decoding rule. Then C can correct all error
patterns of Hamming weight t ≤

⌊
d−1
2

⌋
Proof:
Transmit c ∈ C and receive r ∈ An

Suppose e errors happen in transmission; therefore, d(c, r) = e.
∀w ∈ C : w 6= c, d(w, c) ≥ d by definition.
Since r is at most e away from c it can travel at most e from c to w.
Therefore, d(w, r) ≥ d− e.

Now, e is only correctable if d(w, r) > d(c, r)
Therefore, e is correctable if d(w, r) > e

Therefore, as long as d− e > e then e is correctable.
i.e. e < d

2
≤

⌊
d−1
2

⌋
errors are correctable.

Hence, the error correcting capability of a code is t ≤
⌊

d−1
2

⌋

Lecture Notes, Winter 2004 4

Queen’s University ELEC 865: Coding Theory

A geometrical representation for codewords of a code C of length
n can be given by points of a discrete space.

Example:

A = {0, 1}, C = {000, 011, 101, 110}
n = 3, |An| = 8, |C| = 4, d = 2, t = 0
In this example we can detect d− 1 = 1 error, and cannot correct any
errors.

-

6

000

001

100

101

z

x

y

�
���

�*

�
���

���
�

�
���

010

011 111

110t

tt

t
To move in the x direction, flip the 1st coordinate.

To move in the y direction, flip the 2nd coordinate.
To move in the z direction, flip the 3rd coordinate.

Here half of the points are redundant, giving error resilience.

Lecture Notes, Winter 2004 5

Queen’s University ELEC 865: Coding Theory

3 Hamming Bound

We have C ⊂ An, and we want to maximize both bandwidth
efficiency and power efficiency. To maximize bandwidth efficiency, we
want to maximize the rate of our code = the number of information
bits transmitted in an interval = R = log2|C|

n
. Hence we want |C| to be

large, i.e. make lots of An into codewords, but that decreases d and to
maximize power efficiency, we must maximize d.

The Hamming bound is an upper bound on the number of code-
words |C| in a t-error-correcting code over alphabet A with length n,
where n and t are fixed. To develop the Hamming bound we use the ge-
ometrical representation just presented. In order for the code C ⊆ An

to have an error correction capability of t, spheres of radius t centered
at he codewords must be disjoint. This reduces to the discrete sphere
packing problem where each codeword is a discrete sphere of radius t
in An

An'

&

$

%

&%
'$

&%
'$

&%
'$r

r r
c1

c2 c3

A
A
AAUA

A
AAK

d

�
���
��t

The number of points or elements in each Hamming sphere of radius t
is given by:

1 + (
n
1

)(|A| − 1)1 + (
n
2

)(|A| − 1)2 + ... + (
n
t

)(|A| − 1)t

(The (|A| − 1)t term is necessary because it is not necessarily binary.)

The Hamming bound is then given by:

|C| ≤ |A|n∑t
i=0(

n
i

)(|A| − 1)i

Lecture Notes, Winter 2004 6

Queen’s University ELEC 865: Coding Theory

Perfect sphere packing occurs when
∑

sphere volume
total volume

= 1. Perfect
codes are therefore equivalent to perfect discrete sphere packing. Per-
fect codes satisfy the Hamming bound with equality. Perfect codes do
not necessarily achieve capacity in An, but only achieve capacity in An

bounded by the fixed condition of t.

Example:
C = {000, 111}, d = 3, t = 1
This is a perfect code as illustrated in the figure below. The same is
true for any binary repetition code of odd length. A binary repetition
code of length n is denoted by Rn.

&%
'$

&%
'$r r

000 111

r r
r
r

r
r010 011

100

001

110

101

Other perfect codes:

Hamming Codes (t = 1) are prefect.
For any n, the maximum number of codewords in a single error cor-
recting code = |C| ≤ 2n

1+n

Example
n = 7, |C| ≤ 27

1+7
= 24, i.e. (7,4,3)

Golay code (23,12,7) has perfect discrete sphere packing. It is a triple
error correcting code.

|C| ≤ 223

1 + 23 + (
23
2

) + (
23
3

)

= 212

Lecture Notes, Winter 2004 7

Queen’s University ELEC 865: Coding Theory

4 Gilbert Bound

The Gilbert bound gives the number of codewords guaranteed in
a code with a certain error correcting capability. This is a lower bound
on the number of codewords in the optimal code (i.e. the code with the
most codewords having a certain minimum distance). We can describe
the Gilbert bound algorithmically.

Algorithm:
Fix: A, n, t
Let C = ∅, i = 1
Label all points in A as “non-excluded”
While there are non excluded points, do the following:

Choose any word ci ∈ An and add it to C
i.e. C ⇐ C ∪ {ci}
mark ci and any w ∈ An : d(ci, w) ≤ 2t as excluded
i ⇐ i + 1

End While Loop

This algorithm generates a code such that the resulting minimum
distance d is equal to 2t + 1. Note that in construction, the Hamming
spheres (of radius 2t) are allowed to overlap, as shown in the figure
below. This implies that each iteration does not necessarily exclude all
words in the sphere of the new codeword, because some may have been
previously excluded.

An'

&

$

%

&%
'$

&%
'$

&%
'$r

r rc1

c2
c3

PPP
P

Lecture Notes, Winter 2004 8

Queen’s University ELEC 865: Coding Theory

The maximum number of words excluded in each run of the algorithm
is given by the following:

1 + (
n
1

)(|A| − 1)1 + (
n
2

)(|A| − 1)2 + ... + (
n
2t

)(|A| − 1)2t

The gilbert bound is then given by:

|C| ≥ |A|n∑2t
i=0(

n
i

)(|A| − 1)i

This achieves error correcting capability of exactly t.

Example:
|A| = 2, t = 1

2n

1 + n + n(n−1)
2

≤ |C| ≤ 2n

1 + n

1− 1

n
log2(1 + n +

n(n− 1)

2
) ≤ log2(|C|)

n
= R ≤ 1− 1

n
log2(1 + n)

Lecture Notes, Winter 2004 9

Queen’s University ELEC 865: Coding Theory

The following figure shows the relation between the Hamming and
gilbert bounds. As the bounds get closer our options increase, i.e.
more possible codebooks, but those codebooks have increasingly similar
behaviors.

Lecture Notes, Winter 2004 10

Queen’s University ELEC 865: Coding Theory

5 Decoders

In Hard Decision Decoders (HDD), the demodulator makes hard
decisions on the received information (e.g. bits and BSC) and sends
the decided symbols/bits to the decoder without passing on any further
information on the certainty of its decisions. For example, with +5v for
1, -5v for 0 sent and x received, no information on how close x was to
+5v or -5v will be passed on with the decoder decision. In contrast, soft
decision decoders (SDD) involve demodulators which somehow pass on
some information about the certainty of their decisions. Given a prac-
tical decoding algorithm which can make use and sense of the extra
reliability data, a soft decision decoder can perform a better job in pin-
pointing the positions of more likely errors. Hard decision decoders are
of two types:

1. Complete: output ∈ C.

Definition: Given code C ⊂ An and any vector r ∈ An, a complete
decoder is one which produces a codeword w ∈ C, i.e. it is a function
from AntoC

Hence a complete decoder is really partitioning An and forcing what-
ever it receives into one of the partitions. Note that the regions are
disjoint and complete, i.e. R1∪̇R2∪̇... = An

2. Incomplete: output ∈ {C∪failure} (i.e. retransmission is possible.)

Definition: An incomplete decoder is not guaranteed to produce a
codeword. For r ∈ An the decoder may give a “decoding failure”.

It is very important to note that incomplete decoders are not infe-
rior to complete decoders.

Lecture Notes, Winter 2004 11

Queen’s University ELEC 865: Coding Theory

word

↓
codeword

↓
Modulator → Channel → Demodulator → Decoder →

output

We may model this as a binary erasure channel (BEC) if using incom-
plete decoding. To minimize word/block/frame error probability, we
showed:

MAP ML
v̂ = argmaxP (v|r) → v̂ = argmaxP (r|N)

v v↓
v: a priori equiprobable

Consider a BSC, crossover probability = ε, want P (r|v) ↑

P (r|v) = εdH(r,v) · (1− ε)n−dH(r,v) condition 0 ≤ ε ≤ 1
2

= (1− ε)n(ε
1−ε

)dH(r,v)

Therefore, P (·) ↑ needs dH(r, v) ↓
Therefore, MAP is reduced to Minimum Hamming Distance. The par-
titioning is based on a rule that maximizes the probability of correct
decision by minimizing the Hamming distortion (Hamming distance).

Definition:
A bounded distance decoder with decoding radius t is in most cases an
incomplete decoder. Given r ∈ An it produces a codeword v if and only
if dH(r, v) ≤ t. Said another way:

For v ∈ C, r ∈ An, dH(r, v) { if ≤ t ⇒ decode
if > t ⇒ failure

An'

&

$

%

&%
'$

&%
'$

&%
'$

r
r r

c1

c2
c3

�
���
��t

decoding failure

Lecture Notes, Winter 2004 12

Queen’s University ELEC 865: Coding Theory

Note that an incomplete decoder is not necessarily inferior to a
complete decoder. In cases where retransmission (ARQ or hybrid schemes)
is conceivable and perhaps complete FEC is too costly, and incomplete
decoder is the way to go, so incomplete decoders are really answers
to specific trade off scenarios by combining error detection and error
correction capabilities.

Lecture Notes, Winter 2004 13

Queen’s University ELEC 865: Coding Theory

6 Abstract Algebra

So far our treatment of block codes has been very general. Without
imposing further structure on the codes, i.e. without considering special
classes of codes, there is very little further to say. One very useful class
of block codes is the linear class. Linear codes have very rich algebraic
structures which lend themselves to the design of encoders and decoders
for them. Linear code design was pioneered by Hamming, Golay, and
Berlekamp in the 40s. For the following two decades, various significant
and useful discoveries ensued from this infusion of algebra in to coding
theory. The 1968 textbook: “Algebraic Coding Theory” by Elwyn
Berlekamp remains a keystone textbook on the subject.

Abstract algebra will allow us to define codes, define decoders, and
actually decode, i.e. when m arrives, it is too much work to compare
it to every ci ∈ C. Hence algebra lets us make fast decisions. Note
that there are many perspectives in which the following algebra can be
discussed. We will use the engineering perspective.

Definition: A binary operation · on a set X is a mapping: X×X → X
(i.e. closure is automatic)

Examples:
1. {0, 1, 2, ...} with · as conventional addition.
2. Z with · as conventional multiplication.
3. The set of 3×3 matrices with · as conventional matrix multiplication.

Definitions:

Semigroup: a set Ĝ with an associative binary operation.

Associative: ∀x, y, z,∈ Ĝ : (x · y) · z = x · (y · z).

Monoid: a semigroup enjoying a unique identity element e.

∃e ∈ Ĝ : e · x = x · e = x

Commutative Semigroup: a semigroup enjoying commutativity.

Lecture Notes, Winter 2004 14

Queen’s University ELEC 865: Coding Theory

Commutative Monoid: a monoid enjoying commutativity.

Commutative: x · y = y · x.

Group: a monoid with inverse elements.
∀x ∈ Ĝ, ∃x−1 : x · x−1 = x−1 · x = e
x−1 = inverse of x

Abelain or Commutative Groups: a group enjoying commutativity.

Remark: A group is a set and an operation satisfying the following
four axioms: closure, associativity, identity element, inverse element.

Lecture Notes, Winter 2004 15

